UAV Path Planning in Multi-Task Environments with Risks through Natural Language Understanding

Author:

Wang Chang1ORCID,Zhong Zhiwei2,Xiang Xiaojia1,Zhu Yi3,Wu Lizhen1,Yin Dong1ORCID,Li Jie1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

2. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

3. School of Information Engineering, Nanjing Audit University, Nanjing 211815, China

Abstract

Path planning using handcrafted waypoints is inefficient for a multi-task UAV operating in dynamic environments with potential risks such as bad weather, obstacles, or forbidden zones, among others. In this paper, we propose an automatic path planning method through natural language that instructs the UAV with compound commands about the tasks and the corresponding regions in a given map. First, we analyze the characteristics of the tasks and we model each task with a parameterized zone. Then, we use deep neural networks to segment the natural language commands into a sequence of labeled words, from which the semantics are extracted to select the waypoints and trajectory patterns accordingly. Finally, paths between the waypoints are generated using rapidly exploring random trees (RRT) or Dubins curves based on the task requirements. We demonstrate the effectiveness of the proposed method using a simulated quadrotor UAV that follows sequential commands in four typical tasks with potential risks.

Funder

Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence”

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3