Carrier Aircraft Flight Controller Design by Synthesizing Preview and Nonlinear Control Laws

Author:

Jia Baoxu1,Sun Liguo1ORCID,Liu Xiaoyu1,Xu Shuting1ORCID,Tan Wenqian1,Jiao Junkai1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

This paper proposes an innovative automatic carrier landing control law for carrier-based aircraft considering complex ship motion and wind environment. Specifically, a strategy is proposed to synthesize preview control with an adaptive nonlinear control scheme. Firstly, incremental nonlinear backstepping control law is adopted in the attitude control loop to enhance the anti-disturbance capability of the aircraft. Secondly, to enhance the glide slope tracking performance under severe sea conditions, the carrier motion is predicted, and the forecasted motion is adopted in an optimal preview control guidance law to compensate influences induced by carrier motion. However, synthesizing the inner-loop and outer-loop control is not that straightforward since the preview control is naturally an optimal control law which requires a state-space model. Therefore, low-order equivalent fitting of the attitude-to-altitude high-order system model needs to be performed; furthermore, a state observer needs to be designed for the low-order equivalent system to supply required states to the landing controller. Finally, to validate the proposed methodology, an unmanned tailless aircraft model is used to perform the automatic landing tasks under variant sea conditions. Results show that the automatic carrier landing system can lead to satisfactory landing precision and success rate even under severe sea conditions.

Funder

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3