Affiliation:
1. Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju-si 52828, Republic of Korea
2. Department of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinjudaero, Jinju-si 52828, Republic of Korea
3. School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
Abstract
Different from mobile ad hoc networks (MANETs) and vehicular ad hoc networks (VANETs), a flying ad hoc network (FANET) is a very low-density network where node topology changes rapidly and irregularly. These characteristics, the density, mobility, and speed of flight nodes, affect the performance of FANET. Furthermore, application scenarios and environmental settings could affect the performance of FANETs. In this paper, we analyzed the representative FANET protocols, AODV, DSDV, and OLSR, according to mobility models, SRWP, MP, RDPZ, EGM, and DPR, under the multi-UAV-based reconnaissance scenario. We evaluated them in terms of the number of nodes, network connectivity, mobility model’s reconnaissance rate, speed of nodes, and ground control station (GCS) location. As a result, we found that AODV showed the highest PDR performance (81%) with SRWP in multiple UAV-based reconnaissance scenarios. As for a mobility model under the consideration of reconnaissance rate, SRWP was excellent at 76%, and RDPZ and EGM mobility models were reasonable at 62% and 60%, respectively. We also made several interesting observations such as how when the number of nodes increases, the connectivity of the network increases, but the performance of the routing protocol decreases, and how the GCS location affects the PDR performance of the combination of routing protocols and mobility models.
Funder
National Research Foundation of Korea
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献