Flight Test Analysis of UTM Conflict Detection Based on a Network Remote ID Using a Random Forest Algorithm

Author:

Ruseno Neno1,Lin Chung-Yan2,Guan Wen-Lin3

Affiliation:

1. Department of Power Mechanical Engineering, National Formosa University, Huwei 632301, Taiwan

2. Department of Aeronautical Engineering, National Formosa University, Huwei 632301, Taiwan

3. Taiwan Transportation Safety Board, New Taipei City 231, Taiwan

Abstract

In an area where unmanned aerial system (UAS) traffic is high, a conflict detection system is one of the important components for the safety of UAS operations. A novel UAS traffic management (UTM) monitoring application was developed, including a conflict detection system using the inverted teardrop area detection based on real-time flight data transmitted from the network remote identification (Remote ID) modules. This research aimed to analyze the performance of the UTM-monitoring application based on flight test data using statistical and machine learning approaches. The flight tests were conducted using several types of small fixed-wing unmanned aerial vehicles (UAVs) controlled by a human pilot using a Taiwan cellular communication network in suburban and rural areas. Two types of scenarios that involved a stationary, on-the-ground intruder and a flying intruder were used to simulate a conflict event. Besides the statistical method calculating the mean and standard deviation, the random forest algorithm, including regressor and classifier modules, was used to analyze the flight parameters and timing parameters of the flight tests. The result indicates that the processing time of the UTM application was the most significant parameter to the conflict warning parameter, besides the relative distance and height between UAVs. In addition, the latency time was higher for the flight in the rural area than the suburban area and also higher for data transmitted from the flying position than the ground position. The findings of our study can be used as a reference for aviation authorities and other stakeholders in the development of future UTM systems.

Funder

the National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3