Affiliation:
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
2. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
Abstract
The current morphing technologies are mostly regarded as auxiliary tools, providing additional control torques to enhance the flight maneuverability of unmanned aerial vehicles (UAVs), and they cannot exist independently of the traditional control surfaces. In this paper, we propose a tandem-wing micro aerial vehicle (MAV) with multiple variable-sweep wings, which can reduce the additional inertia forces and moments and weaken the dynamic coupling between longitudinal and lateral motion while the MAV morphs symmetrically for pitch control or asymmetrically for roll control, thereby flying without the traditional aileron and elevator. First, load experiments were conducted on the MAV to verify the structural strength of the multiple variable sweep wings, and the control moments caused by the morphing of the MAV were presented through numerical simulations. Then, the effects caused by symmetric and asymmetric morphing were investigated via dynamic response simulations based on the Kane dynamic model of the MAV, and the generated additional inertia forces and moments were also analyzed during morphing. Finally, dynamic response experiments and open-loop flight experiments were conducted. The experimental results demonstrated that the morphing mode in this study could weaken the coupling between the longitudinal and lateral dynamics and that it was feasible for attitude control without the traditional aileron and elevator while flying.
Funder
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献