UDE-Based Dynamic Surface Control for Quadrotor Drone Attitude Tracking under Non-Ideal Actuators

Author:

Xu Linxi12,Qin Kaiyu12,Tang Fan12,Shi Mengji12,Lin Boxian12ORCID

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

Abstract

Quadrotor drone attitude tracking is inevitably affected by the combination of model uncertainties, external disturbances, and non-ideal actuator dynamics during stable flight and complex maneuvers. In order to achieve precise attitude control in these situations, a cascade-structured dynamic surface control (DSC) strategy is proposed based on an uncertainty and disturbance estimator (UDE), considering the actuator dynamics as represented by a first-order plus time-delay model. The DSC scheme is used to transform the original attitude dynamics system into a set of interconnected subsystems. On the one hand, the mismatched disturbances in the attitude kinematics and dynamics loops are converted into matched disturbances to accommodate the structural constraints of the UDE so that these disturbances, as well as the non-ideality caused by the actuator time delay, are estimated and compensated for by the approach. On the other hand, the “complexity explosion” problem is addressed by the first-order filter employed by DSC. The ultimate boundedness of the closed-loop system is proven while the parameter design constraints are provided. MATLAB Simulink simulations are conducted to demonstrate the desirability of considering actuator dynamics and to verify that the proposed control strategy can relax the constraints of the control parameters and enable a higher accuracy.

Funder

National Natural Science Foundation of Sichuan

Science and Technology Department of Sichuan Province

Fundamental Research Funds for the Central Universities

Wuhu Science and Technology Plan Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3