An Approach to the Implementation of a Neural Network for Cryptographic Protection of Data Transmission at UAV

Author:

Tsmots Ivan1ORCID,Teslyuk Vasyl1ORCID,Łukaszewicz Andrzej2ORCID,Lukashchuk Yurii1,Kazymyra Iryna1ORCID,Holovatyy Andriy3ORCID,Opotyak Yurii1ORCID

Affiliation:

1. Department of Automated Control Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine

2. Department of Machine Design and Exploitation, Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland

3. Department of Computer-Aided Design Systems, Lviv Polytechnic National University, 79013 Lviv, Ukraine

Abstract

An approach to the implementation of a neural network for real-time cryptographic data protection with symmetric keys oriented on embedded systems is presented. This approach is valuable, especially for onboard communication systems in unmanned aerial vehicles (UAV), because of its suitability for hardware implementation. In this study, we evaluate the possibility of building such a system in hardware implementation at FPGA. Onboard implementation-oriented information technology of real-time neuro-like cryptographic data protection with symmetric keys (masking codes, neural network architecture, and matrix of weighting coefficients) has been developed. Due to the pre-calculation of matrices of weighting coefficients and tables of macro-partial products and the use of tabular-algorithmic implementation of neuro-like elements and dynamic change of keys, it provides increased cryptographic stability and hardware–software implementation on FPGA. The table-algorithmic method of calculating the scalar product has been improved. By bringing the weighting coefficients to the greatest common order, pre-computing the tables of macro-partial products, and using operations of memory read, fixed-point addition, and shift operations instead of floating-point multiplication and addition operations, it provides a reduction in hardware costs for its implementation and calculation time as well. Using a processor core supplemented with specialized hardware modules for calculating the scalar product, a system of neural network cryptographic data protection in real-time has been developed, which, due to the combination of universal and specialized approaches, software, and hardware, ensures the effective implementation of neuro-like algorithms for cryptographic encryption and decryption of data in real-time. The specialized hardware for neural network cryptographic data encryption was developed using VHDL for equipment programming in the Quartus II development environment ver. 13.1 and the appropriate libraries and implemented on the basis of the FPGA EP3C16F484C6 Cyclone III family, and it requires 3053 logic elements and 745 registers. The execution time of exclusively software realization of NN cryptographic data encryption procedure using a NanoPi Duo microcomputer based on the Allwinner Cortex-A7 H2+ SoC was about 20 ms. The hardware–software implementation of the encryption, taking into account the pre-calculations and settings, requires about 1 msec, including hardware encryption on the FPGA of four 2-bit inputs, which is performed in 160 nanoseconds.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference46 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3