Exploring Radar Micro-Doppler Signatures for Recognition of Drone Types

Author:

Yan Jun1,Hu Huiping2,Gong Jiangkun1ORCID,Kong Deyong13,Li Deren1

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sense, Wuhan University, Wuhan 430072, China

2. Wuhan Geomatics Institute, Wuhan 430022, China

3. School of Information and Communication Engineering, Hubei University of Economics, Wuhan 430205, China

Abstract

In this study, we examine the use of micro-Doppler signals produced by different blades (i.e., puller and lifting blades) to aid in radar-based target recognition of small drones. We categorize small drones into three types based on their blade types: fixed-wing drones with only puller blades, multi-rotor drones with only lifting blades, and hybrid vertical take-off and landing (VTOL) fixed-wing drones with both lifting and puller blades. We quantify the radar signatures of the three drones using statistical measures, such as signal-to-noise ratio (SNR), signal-to-clutter ratio (SCR), Doppler speed, Doppler frequency difference (DFD), and Doppler magnitude ratio (DMR). Our findings show that the micro-Doppler signals of lifting blades in all three drone types were stronger than those of puller blades. Specifically, the DFD and DMR values of pusher blades were below 100 Hz and 0.3, respectively, which were much smaller than the 200 Hz and 0.8 values for lifting blades. The micro-Doppler signals of the puller blades were weaker and more stable than those of the lifting blades. Our study demonstrates the potential of using micro-Doppler signatures modulated by different blades for improving drone detection and the identification of drone types by drone detection radar.

Funder

Natural Science Foundation of Hubei Providence

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3