QEHLR: A Q-Learning Empowered Highly Dynamic and Latency-Aware Routing Algorithm for Flying Ad-Hoc Networks

Author:

Xue Qiubei12,Yang Yang1ORCID,Yang Jie13,Tan Xiaodong4,Sun Jie1,Li Gun2ORCID,Chen Yong12ORCID

Affiliation:

1. Chengdu Fluid Dynamics Innovation Center, Chengdu 610031, China

2. China School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

3. School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

4. Officers College of PAP, Chengdu 610213, China

Abstract

With the growing utilization of intelligent unmanned aerial vehicle (UAV) clusters in both military and civilian domains, the routing protocol of flying ad-hoc networks (FANETs) has promised a crucial role in facilitating cluster communication. However, the highly dynamic nature of the network topology, owing to the rapid movement and changing direction of aircraft nodes, as well as frequent accesses and exits from the network, has resulted in an increased interruption rate of FANETs links. While traditional protocols can satisfy basic network service quality (QoS) requirements in mobile ad-hoc networks (MANETs) with relatively fixed topology changes, they may fail to achieve optimal routes and consequently restrict information dissemination in FANETs with topology changes, which ultimately leads to elevated packet loss and delay. This paper undertakes an in-depth investigation of the challenges faced by current routing protocols in high dynamic topology scenarios, such as delay and packet loss. It proposes a Q-learning empowered highly dynamic, and latency-aware routing algorithm for flying ad-hoc networks (QEHLR). Traditional routing algorithms are unable to effectively route packets in highly dynamic FANETs; hence, this paper employs a Q-learning method to learn the link status in the network and effectively select routes through Q-values to avoid connection loss. Additionally, the remaining time of the link or path lifespan is incorporated into the routing protocol to construct the routing table. QEHLR can delete predicted failed links based on network status, thereby reducing packet loss caused by failed route selection. Simulations show that the enhanced algorithm significantly improves the packet transmission rate, which addresses the challenge of routing protocols’ inability to adapt to various mobility scenarios in FANETs with dynamic topology by introducing a calculation factor based on the QEHLR protocol. The experimental results indicate that the improved routing algorithm achieves superior network performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3