Fast and High-Quality Monocular Depth Estimation with Optical Flow for Autonomous Drones

Author:

Shimada Tomoyasu1,Nishikawa Hiroki2ORCID,Kong Xiangbo1,Tomiyama Hiroyuki1

Affiliation:

1. Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan

2. Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan

Abstract

Recent years, autonomous drones have attracted attention in many fields due to their convenience. Autonomous drones require precise depth information so as to avoid collision to fly fast and both of RGB image and LiDAR point cloud are often employed in applications based on Convolutional Neural Networks (CNNs) to estimate the distance to obstacles. Such applications are implemented onboard embedded systems. In order to precisely estimate the depth, such CNN models are in general so complex to extract many features that the computational complexity increases, requiring long inference time. In order to solve the issue, we employ optical flow to aid in-depth estimation. In addition, we propose a new attention structure that makes maximum use of optical flow without complicating the network. Furthermore, we achieve improved performance without modifying the depth estimator by adding a perceptual discriminator in training. The proposed model is evaluated through accuracy, error, and inference time on the KITTI dataset. In the experiments, we have demonstrated the proposed method achieves better performance by up to 34% accuracy, 55% error reduction and 66% faster inference time on Jetson nano compared to previous methods. The proposed method is also evaluated through a collision avoidance in simulated drone flight and achieves the lowest collision rate of all estimation methods. These experimental results show the potential of proposed method to be used in real-world autonomous drone flight applications.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3