High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms

Author:

Zhou Jingping12,Xu Yaping34ORCID,Gu Xiaohe1ORCID,Chen Tianen1,Sun Qian15,Zhang Sen16,Pan Yuchun1

Affiliation:

1. Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China

3. Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA

4. Department of Environmental and Geosciences, Sam Houston State University, Huntsville, TX 77340, USA

5. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

6. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

Soil organic matter (SOM) is a critical indicator of soil nutrient levels, and the precise mapping of its spatial distribution through remote sensing is essential for soil regulation, precise fertilization, and scientific management and protection. This information can offer decision support to agricultural management departments and various agricultural producers. In this paper, two new soil indices, NLIrededge2 and GDVIrededge2, were proposed based on the sensitive spectral response characteristics of SOM in Northeast China. Nine parameters suitable for SOM mapping and modeling were determined using the competitive adaptive reweighted sampling (CARS) method, combined with spectrum reflectance, mathematical transformations of reflectance, vegetation indices, and so on. Then, utilizing unmanned aerial vehicle (UAV)-based multispectral images with centimeter-level resolution, a random forest machine learning algorithm was used to construct the inversion model of SOM and mapping SOM in the study area. The results showed that the random forest algorithm performed best for estimating SOM (R2 = 0.91, RMSE = 0.95, MBE = 0.49, and RPIQ = 3.25) when compared with other machine learning algorithms such as support vector regression (SVR), elastic net, Bayesian ridge, and linear regression. The findings indicated a negative correlation between SOM content and altitude. The study concluded that the SOM modeling and mapping results could meet the needs of farmers to obtain basic information and provide a reference for UAVs to monitor SOM.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3