Robust Cooperative Control of UAV Swarms for Dual-Camp Divergent Tracking of a Heterogeneous Target

Author:

Jiang Bing123,Qin Kaiyu12,Li Tong124,Lin Boxian12ORCID,Shi Mengji12

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

3. Chinese Aeronautical Establishment, Beijing 100029, China

4. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610041, China

Abstract

Agents are used to exhibit swarm intelligence in the sense of convergence, while divergence is equivalently common in nature and useful in complex applications for multi-UAV systems. This paper proposes a robust target-tracking control algorithm, where UAV swarms are partitioned by a signed graph to perform opposite movements along or against the trajectory of the target. Uncertainties take place in both the fractional-order model of the target and the double-integrator dynamics of the UAVs. To tackle the challenge induced by the bipartite behavior and unknown components in the multi-UAV systems, the article comes up with a backstepping cascade controller and a new method for uncertainty estimation-compensation via a combined approach based on a neural network (NN) and an Uncertainty and Disturbance Estimator (UDE). Steered by the controller, UAVs in a structurally balanced network will display symmetry of their paths, pursuing or away from the target with respect to the origin. Theoretical derivation and numerical simulations have evidenced that the tracking errors converge to zero. Compared with the traditional NN method to solve such problems, this method is proposed for the first time, which can effectively improve the precision of cooperative target tracking and reduce the chattering phenomena of the controller.

Funder

National Natural Science Foundation of Sichuan

Science and Technology Department of Sichuan Province

Fundamental Research Funds for the Central Universities

Wuhu Science and Technology Plan Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3