Optimization Algorithms for UAV-and-MUV Cooperative Data Collection in Wireless Sensor Networks

Author:

Lu Yu12,Hong Yi12ORCID,Luo Chuanwen12ORCID,Li Deying3,Chen Zhibo12

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

3. School of Information, Renmin University of China, Beijing 100872, China

Abstract

The deployment of unmanned aerial vehicles (UAVs) has significantly improved the efficiency of data collection for wireless sensor networks (WSNs). The freshness of collected information from sensors can be measured by the age of information (AoI), which is an important factor to consider in data collection. For data collection during long-term mission, the energy limitation of UAVs may cause mission interruption, which makes supplementation of the UAVs’ energy more necessary. To this end, we introduce the mobile unmanned vehicle (MUV) to guarantee the UAVs’ energy supplementation. In this paper, we investigate the problem of multi-UAVs and single-MUV cooperative trajectory planning (MUSM-CTP) for data collection in WSNs with consideration for the AoI the collected data and the limited battery capacity of UAVs. The objective of this problem is to find cooperative flight trajectories for multiple UAVs and to determine the MUV’s travel plan to replace batteries for the UAVs, such that the average AoI of all collected data is minimized. We prove the NP-hardness of the problem and design the algorithm via three phases to solve this: determining candidate hover points based on the affinity propagation (AP) clustering method, constructing the flight trajectories of multiple UAVs based on the genetic algorithm (GA), and designing a travel plan for the MUV. The simulation results verify the effectiveness of the proposed algorithm in improving the freshness of the information collected from all of the sensors.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3