Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph Attention Network for UAV Swarms

Author:

Yang Min1,Liu Guanjun1ORCID,Zhou Ziyuan1ORCID,Wang Jiacun2ORCID

Affiliation:

1. Department of Computer Science and Technology, Tongji University, Shanghai 201804, China

2. Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ 07764, USA

Abstract

Multiple unmanned aerial vehicles (Multi-UAV) systems have recently demonstrated significant advantages in some real-world scenarios, but the limited communication range of UAVs poses great challenges to multi-UAV collaborative decision-making. By constructing the multi-UAV cooperation problem as a multi-agent system (MAS), the cooperative decision-making among UAVs can be realized by using multi-agent reinforcement learning (MARL). Following this paradigm, this work focuses on developing partially observable MARL models that capture important information from local observations in order to select effective actions. Previous related studies employ either probability distributions or weighted mean field to update the average actions of neighborhood agents. However, they do not fully consider the feature information of surrounding neighbors, resulting in a local optimum often. In this paper, we propose a novel partially multi-agent reinforcement learning algorithm to remedy this flaw, which is based on graph attention network and partially observable mean field and is named as the GPMF algorithm for short. GPMF uses a graph attention module and a mean field module to describe how an agent is influenced by the actions of other agents at each time step. The graph attention module consists of a graph attention encoder and a differentiable attention mechanism, outputting a dynamic graph to represent the effectiveness of neighborhood agents against central agents. The mean field module approximates the effect of a neighborhood agent on a central agent as the average effect of effective neighborhood agents. Aiming at the typical task scenario of large-scale multi-UAV cooperative roundup, the proposed algorithm is evaluated based on the MAgent framework. Experimental results show that GPMF outperforms baselines including state-of-the-art partially observable mean field reinforcement learning algorithms, providing technical support for large-scale multi-UAV coordination and confrontation tasks in communication-constrained environments.

Funder

Shanghai Science and Technology Committee

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3