UAV Deployment Optimization for Secure Precise Wireless Transmission

Author:

Shen Tong1ORCID,Xia Guiyang1,Ye Jingjing2,Gu Lichuan1,Zhou Xiaobo1,Shu Feng3

Affiliation:

1. School of Information and Computer, Anhui Agricultural University, Hefei 230036, China

2. Mingguang Meteorological Mureau, Chuzhou 239400, China

3. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

Abstract

This paper develops an unmanned aerial vehicle (UAV) deployment scheme in the context of the directional modulation-based secure precise wireless transmissions (SPWTs) to achieve more secure and more energy efficiency transmission, where the optimal UAV position for the SPWT is derived to maximize the secrecy rate (SR) without frequency diverse array (FDA) and injecting any artificial noise (AN) signaling. To be specific, the proposed scheme reveals that the optimal position of UAV for maximizing the SR performance has to be placed at the null space of Eves channel, which impels the received energy of the confidential message at the unintended receiver deteriorating to zero, whilst benefits the one at the intended receiver by achieving its maximum value. Moreover, the highly cost FDA structure is eliminated and transmit power is all allocated for transmitting a useful message which shows its energy efficiency. Finally, simulation results verify the optimality of our proposed scheme in terms of the achievable SR performance.

Funder

Scientific Research Fund Project of Anhui Agricultural University

National Natural Science Foundation of China

Natural Science Research Project of Education Department of Anhui Province of China

Key Research and Development Project of Anhui Province

Natural Science Foundation of Jiangsu Province

open research fund of National Mobile Communications Research Laboratory, Southeast University

Scientific Research Fund Project of Hainan University

Hainan Major Projects

National Key R and D Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3