Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning

Author:

Liang Yuying1,Sun Yongke1,Kou Weili12ORCID,Xu Weiheng12ORCID,Wang Juan3,Wang Qiuhua4,Wang Huan1,Lu Ning12ORCID

Affiliation:

1. College of Big Data and Intelligence Engineering, Southwest Forestry University, Kunming 650223, China

2. Key Laboratory of National Forestry and Grassland Administration on Forestry and Ecological Big Data, Kunming 650223, China

3. Eco-Development Academy, Southwest Forestry University, Kunming 650223, China

4. College of Civil Engineering, Southwest Forestry University, Kunming 650223, China

Abstract

The rubber tree (Hevea brasiliensis) is an important tree species for the production of natural latex, which is an essential raw material for varieties of industrial and non-industrial products. Rapid and accurate identification of the number of rubber trees not only plays an important role in predicting biomass and yield but also is beneficial to estimating carbon sinks and promoting the sustainable development of rubber plantations. However, the existing recognition methods based on canopy characteristic segmentation are not suitable for detecting individual rubber trees due to their high canopy coverage and similar crown structure. Fortunately, rubber trees have a defoliation period of about 40 days, which makes their trunks clearly visible in high-resolution RGB images. Therefore, this study employed an unmanned aerial vehicle (UAV) equipped with an RGB camera to acquire high-resolution images of rubber plantations from three observation angles (−90°, −60°, 45°) and two flight directions (SN: perpendicular to the rubber planting row, and WE: parallel to rubber planting rows) during the deciduous period. Four convolutional neural networks (multi-scale attention network, MAnet; Unet++; Unet; pyramid scene parsing network, PSPnet) were utilized to explore observation angles and directions beneficial for rubber tree trunk identification and counting. The results indicate that Unet++ achieved the best recognition accuracy (precision = 0.979, recall = 0.919, F-measure = 94.7%) with an observation angle of −60° and flight mode of SN among the four deep learning algorithms. This research provides a new idea for tree trunk identification by multi-angle observation of forests in specific phenological periods.

Funder

National Natural Science Foundation of China

Key Laboratory of National Forestry and Grassland Administration on Forestry and Ecological Big Data, Southwest Forestry University

Joint Special Project for Agriculture of Yunnan Province

Scientific Research Foundation for Ph.D. of Southwest Forestry University

Research Foundation for Basic Research of Yunnan Province

Youth Top Talents of Yunnan Ten Thousand Talents Program

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3