Model, Control, and Realistic Visual 3D Simulation of VTOL Fixed-Wing Transition Flight Considering Ground Effect

Author:

Irmawan Erwhin12,Harjoko Agus1ORCID,Dharmawan Andi1

Affiliation:

1. Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2. Department of Aerospace Engineering, Sekolah Tinggi Teknologi Kedirgantaraan, Yogyakarta 55188, Indonesia

Abstract

The research topic of VTOL (vertical take-off and landing) fixed wing (VFW) is gaining significant attention, particularly in the transition phase from VTOL to fixed wing and vice versa. One of the latest and most challenging transition strategies is the bird take-off mode, where vertical and horizontal take-off is carried out simultaneously, mimicking the behavior of birds. The condition that is rarely considered when taking off is the ground effect. Under natural conditions, a ground effect is bound to occur, which can significantly impact the stability of the transition when the VFW is close to the ground. This paper addresses this issue by proposing a model and control strategy and conducting realistic visual 3D simulations of the VFW transition that incorporates ground effect using full complex aerodynamic parameters. This research represents a novel approach, using the robot operating system (ROS) and Gazebo to conduct realistic visual 3D simulations for VFW transition. The linear quadratic regulator (LQR) control method is used to manage the transitions and compensate for any disturbances. The flight tests demonstrate the effectiveness of the proposed model and controller in executing flight missions using the bird take-off mode transition. Moreover, the controller has demonstrated reliability and robustness in compensating for attitude errors induced by ground effects and external disturbances.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3