Estimating Maize Maturity by Using UAV Multi-Spectral Images Combined with a CCC-Based Model
Author:
Liu Zhao12ORCID, Li Huapeng1, Ding Xiaohui3, Cao Xinyuan4, Chen Hui12, Zhang Shuqing1
Affiliation:
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. School of Software & Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang 330077, China 4. College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
Abstract
Measuring maize grain moisture content (GMC) variability at maturity provides an essential piece of information for the formulation of maize harvesting sequences and the applications of precision agriculture. Canopy chlorophyll content (CCC) is an important parameter that describes crop growth, photosynthetic rate, health, and senescence. The main goal of this study was to estimate maize GMC at maturity through CCC retrieved from multi-spectral UAV images using a PROSAIL model inversion and compare its performance with GMC estimation through simple vegetation indices (VIs) approaches. This study was conducted in two separate maize fields of 50.3 and 56 ha located in Hailun County, Heilongjiang Province, China. Each of the fields was cultivated with two maize varieties. One field was used as reference data for constructing the model, and the other field was applied to validate. The leaf chlorophyll content (LCC) and leaf area index (LAI) of maize were collected at three critical stages of crop growth, and meanwhile, the GMC of maize at maturity was also obtained. During the collection of field data, a UAV flight campaign was performed to obtain multi-spectral images from two fields at three main crop growth stages. In order to calibrate and evaluate the PROSAIL model for obtaining maize CCC, crop canopy spectral reflectance was simulated using crop-specific parameters. In addition, various VIs were computed from multi-spectral images to estimate maize GMC at maturity and compare the results with CCC estimations. When the CCC-retrieved results were compared to measured data, the R2 value was 0.704, the RMSE was 34.58 μg/cm2, and the MAE was 26.27 μg/cm2. The estimation accuracy of the maize GMC based on the normalized red edge index (NDRE) was demonstrated to be the greatest among the selected VIs in both fields, with R2 values of 0.6 and 0.619, respectively. Although the VIs of UAV inversion GMC accuracy are lower than those of CCC, their rapid acquisition, high spatial and temporal resolution, suitability for empirical models, and capture of growth differences within the field are still helpful techniques for field-scale crop monitoring. We found that maize varieties are the main reason for the maturity variation of maize under the same geographical and environmental conditions. The method described in this article enables precision agriculture based on UAV remote sensing by giving growers a spatial reference for crop maturity at the field scale.
Funder
Special Project of Strategic Leading Science and Technology of the Chinese Academy of Sciences
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Reference70 articles.
1. FAO (2022, May 09). FAOSTAT-Agriculture Database. Available online: http://www.fao.org/statistics/zh/. 2. Meng, J.H., Dong, T., Zhang, M., You, X., and Wu, B. (2013). Precision Agriculture’13, Wageningen Academic Publishers. 3. Optimizing soybean harvest date using HJ-1 satellite imagery;Meng;Precis. Agric.,2015 4. Use of remote sensing to predict the optimal harvest date of corn;Xu;Field Crops Res.,2019 5. Study on the influence of harvest time on the oil and yield of different mature period high-oil soybean;Wang;Chin. Agric. Sci. Bull.,2009
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|