Machine Learning Methods for Inferring the Number of UAV Emitters via Massive MIMO Receive Array

Author:

Li Yifan1,Shu Feng12,Hu Jinsong3ORCID,Yan Shihao4,Song Haiwei5,Zhu Weiqiang5,Tian Da5,Song Yaoliang1,Wang Jiangzhou6

Affiliation:

1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

3. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China

4. School of Science and Security Research Institute, Edith Cowan University, Perth, WA 6027, Australia

5. 8511 Research Institute, China Aerospace Science and Industry Corporation, Nanjing 210007, China

6. School of Engineering, University of Kent, Canterbury CT2 7NT, UK

Abstract

To provide important prior knowledge for the direction of arrival (DOA) estimation of UAV emitters in future wireless networks, we present a complete DOA preprocessing system for inferring the number of emitters via a massive multiple-input multiple-output (MIMO) receive array. Firstly, in order to eliminate the noise signals, two high-precision signal detectors, the square root of the maximum eigenvalue times the minimum eigenvalue (SR-MME) and the geometric mean (GM), are proposed. Compared to other detectors, SR-MME and GM can achieve a high detection probability while maintaining extremely low false alarm probability. Secondly, if the existence of emitters is determined by detectors, we need to further confirm their number. Therefore, we perform feature extraction on the the eigenvalue sequence of a sample covariance matrix to construct a feature vector and innovatively propose a multi-layer neural network (ML-NN). Additionally, the support vector machine (SVM) and naive Bayesian classifier (NBC) are also designed. The simulation results show that the machine learning-based methods can achieve good results in signal classification, especially neural networks, which can always maintain the classification accuracy above 70% with the massive MIMO receive array. Finally, we analyze the classical signal classification methods, Akaike (AIC) and minimum description length (MDL). It is concluded that the two methods are not suitable for scenarios with massive MIMO arrays, and they also have much worse performance than machine learning-based classifiers.

Funder

National Natural Science Foundation of China

Major Science and Technology plan of Hainan Province

Scientific Research Fund Project of Hainan University

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3