A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles

Author:

Che Haohui1,Chen Jun2,Bai Guanghui3,Wang Jianying1

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, China

2. China Academy of Launch Vehicle Technology, Beijing 100076, China

3. Science and Technology on Space Physics Laboratory, Beijing 100076, China

Abstract

This paper investigates the attitude control problem for large-scale morphing unmanned vehicles. Considering the rapid time-varying and strong aerodynamic interference caused by large-scale morphing, a modified model-free control method utilizing only the system input and output is proposed. Firstly, a two-loop equivalent data model for the morphing unmanned vehicle is developed, which can better reflect the practical dynamics of morphing unmanned vehicles compared to the traditional compact form dynamic linearization data model. Based on the proposed data model, a modified model-free adaptive control (MMFAC) scheme is proposed, consisting of an external-loop and an inner-loop controller, so as to generate the required combined control torques. Additionally, in light of the aerodynamic uncertainties of the large-scale morphing unmanned vehicle, a rudder deflection actuator control scheme is designed by employing the model-free adaptive control approach. Finally, the boundedness of the closed-loop system and the convergence of tracking errors are guaranteed, based on the stability analysis. Additionally, numerical examples are presented to demonstrate the effectiveness and robustness of the proposed control scheme in the case of the effect of large-scale morphing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural network observer-based predefined-time attitude control for morphing hypersonic vehicles;Aerospace Science and Technology;2024-09

2. A High-order Model-free Adaptive Control Method for Morphing Vehicles;Proceedings of the 2024 3rd International Symposium on Intelligent Unmanned Systems and Artificial Intelligence;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3