Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy

Author:

Arachchige Charuka Muktha1,Muller Andreas1ORCID

Affiliation:

1. Physics Department, University of South Florida, Tampa, FL 33620, USA

Abstract

Spontaneous Raman gas spectroscopy, which stands out as a versatile chemical identification tool, typically relies on frequency-doubled infrared laser sources to deliver the high power and narrow linewidth needed to achieve chemical detection at trace concentrations. The relatively low efficiency and high complexity of these lasers, however, can make them challenging to integrate into field-deployable instruments. Additionally, the frequency doubling prevents the utilization of circulating laser power for Raman enhancement. A diode-pumped Pr:YLF laser was investigated as an alternative narrow-band light source that could potentially realize a more portable Raman scattering system. When operated with an intracavity etalon, the laser realized a linewidth of 0.5 cm−1 with a green output power of 0.37 W and circulating power of 16 W when pumped with 3.1 W from a blue diode laser. Trace detection at atmospheric pressure with a high degree of spectral discrimination was demonstrated by resolving overlapping N2/CO and CO2/N2O Raman bands in air.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1.01-W narrow-linewidth ultra-violet laser by Pr: YLF;Optics Communications;2024-10

2. Raman scattering applied to human breath analysis;TrAC Trends in Analytical Chemistry;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3