Abstract
Online monitoring of wastewater quality parameters is vital for an efficient and stable operation of wastewater treatment plants (WWTP). Several WWTPs rely on daily/weekly analysis of water samples rather than online automated wet-analyzers due to their high capital and maintenance costs. Soft-sensors are emerging as a viable alternative for real-time monitoring of parameters that either lack a reliable measuring principle or are measured using expensive online sensors. This paper presents the development, implementation, and validation of a hybrid soft sensor used to estimate Total Phosphorus (TP) and Chemical Oxygen Demand (COD) in the influent and effluent streams of a full-scale WWTP. A systematic method for cleaning and processing sensor data, identifying statistically significant correlations, and developing a mathematical model, is discussed. A non-intrusive Industrial Internet of Things (IIoT) infrastructure for soft-sensor deployment and a web-based GUI for data visualization are also presented in this work. The values of TP and COD estimated by the soft sensor are validated by comparing the estimated values to the daily average of their corresponding lab measurements. The data validation results demonstrate the potential of soft sensors in providing real-time values of essential wastewater quality parameters with an acceptable degree of accuracy.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献