Contemporary Trends in High and Low River Flows in Upper Indus Basin, Pakistan

Author:

Yaseen Muhammad,Latif Yasir,Waseem Muhammad,Leta MegersaORCID,Abbas SohailORCID,Akram Bhatti Haris

Abstract

The Upper Indus Basin (UIB) features the high mountain ranges of the Hindukush, Karakoram and Himalaya (HKH). The snow and glacier meltwater contribution feeds 10 major river basins downstream including Astore, Gilgit, Hunza, Jhelum, Kabul, Shyok and Shigar. Climate change is likely to fluctuate the runoff generated from such river basins concerning high and low streamflows. Widening the lens of focus, the present study examines the magnitude and timing of high flows variability as well as trends variability in low streamflows using Sen’s slope and the Mann-Kendall test in UIB from 1981 to 2016. The results revealed that the trend in the magnitude of the high flows decreased at most of the sub-basins including the Jhelum, Indus and Kabul River basins. Significantly increased high flows were observed in the glacier regime of UIB at Shigar and Shyok while decreased flows were predominant in Hunza River at Daniyor Bridge. A similar proclivity of predominantly reduced flows was observed in nival and rainfall regimes in terms of significant negative trends in the Jhelum, Kunhar, Neelum and Poonch River basins. The timing of the high flows has not changed radically as magnitude at all gauging stations. For the low flows, decreasing significant trends were detected in the annual flows as well as in other extremes of low flows (1-day, 7-day, 15-day). The more profound and decreasing pattern of low flows was observed in summer at most of the gauging stations; however, such stations exhibited increased low flows in autumn, winter and spring. The decrease in low flows indicates the extension of dry periods particularly in summer. The high-water demand in summer will be compromised due to consistently reducing summer flows; the lower the water availability, the lower will be the crop yield and electricity generation.

Funder

University of Rostock

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3