Extraction of Rare Earth Metals by Solid-Phase Extractants from Phosphoric Acid Solution

Author:

Cheremisina Olga,Ponomareva Maria,Sergeev Vasiliy,Mashukova Yulia,Balandinsky Daniil

Abstract

Nowadays, solving the problem of rational, integrated use of the mined raw materials, the transition to waste-free technologies for its processing is a crucial task. The sulfuric acid technology used for the processing of apatite concentrates on a large industrial scale does not provide the associated extraction of accompanying valuable components—rare earth metals (REM). During apatite concentrate processing, rare-earth metals are affected by the technology-related dispersion, being distributed between the insoluble leaching residue and phosphoric acid solution sent to the production of fertilizers. The necessity of a cost-effective method development for the extraction of rare earth metals is quite obvious already in connection with the indicated significance of the problem. Phosphoric acid solutions that simulate the composition of industrial phosphoric acid solutions of the following composition 4.5 mol/L H3PO4, 0.19 mol/L H2SO4 and 0.10–0.12% REM were selected as the object of research. The extraction of rare earth metals was carried out using polymers containing a fixed layer of an extractant—di-2-ethylhexylphosphoric acid (D2EHPA). Fixed layer was obtained by impregnation-saturation (solvent-impregnated resin (SIR)) or by the introduction of an extractant at the stage of polymer matrix synthesis (extractant-resin extraction (ERE)). The work determined the thermodynamic and technological characteristics of the solid-phase extraction of rare earth elements from phosphoric acid solutions with polymers impregnated with D2EHPA and containing a rigidly fixed extractant in a styrene-divinylbenzene resin matrix. The possibility of effective multiple use of polymeric resins containing D2EHPA, regenerated with a solution of 1 mol/L sodium citrate, was revealed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3