Gear Root Bending Strength: A New Multiaxial Approach to Translate the Results of Single Tooth Bending Fatigue Tests to Meshing Gears

Author:

Concli FrancoORCID,Fraccaroli Lorenzo,Maccioni LorenzoORCID

Abstract

Developing accurate design data to enable the effective use of new materials is undoubtedly an essential goal in the gear industry. To speed up this process, Single Tooth Bending Fatigue (STBF) tests can be conducted. However, STBF tests tend to overestimate the material properties with respect to tests conducted on Running Gears (RG). Therefore, it is common practice to use a constant correction factor fkorr, of value 0.9 to exploit STBF results to design actual gears, e.g., through ISO 6336. In this paper, the assumption that this coefficient can be considered independent from the gear material, geometry, and loading condition was questioned, and through the combination of numerical simulations with a multiaxial fatigue criterion, a method for the calculation of fkorr was proposed. The implementation of this method using different gear geometries and material properties shows that fkorr varies with the gears geometrical characteristics, the material fatigue strength, and the load ratio (R) set in STBF tests. In particular, by applying the Findley criterion, it was found that, for the same gear geometry, fkorr depends on the material as well. Specifically, fkorr increases with the ratio between the bending and torsional fatigue limits. Moreover, through this method it was shown that the characteristics related to the material and the geometry have a relevant effect in determining the critical point (at the tooth root) where the fracture nucleates.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference78 articles.

1. Gears;Vullo,2020

2. Handbook of Practical Gear Design;Radzevich,1994

3. Different types Failure in gears—A Review;Yadav;IJSETR,2012

4. Surface contact fatigue failures in gears

5. A scuffing model for spur gear contacts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3