Corrosion Behavior of Extruded AM60-AlN Metal Matrix Nanocomposite and AM60 Alloy Exposed to Simulated Acid Rain Environment

Author:

Chávez LuisORCID,Veleva LucienORCID,Feliu SebastiánORCID,Giannopoulou Danai,Dieringa HajoORCID

Abstract

The present work compared the initial stages of corrosion process development on the AM60-AlN metal matrix nanocomposite surface and on AM60, during their exposure for 30 days to simulated acid rain solution (SAR). The AlN nanoparticles were observed as “attached” to those of Mn-rich AlMn intermetallic particles, forming clusters. The introduction of 1.0 wt.% AlN (≈ 80 nm) in the AM60 alloy carried a slight grain refinement and favored the formation of a denser and more protective corrosion layer, suggested by the electrochemical impedance spectroscopy (EIS) values of higher charge transfer resistance (R2) and capacitance, characteristic of the double layer in the presence of corrosion products, and also suggested by Rn (EN) values, compared to those of the AM60 alloy. Thus, the concentration of the released Mg-ions from the composite surface was lower. Due to the increase in time of the SAR solution pH, Al de-alloying may occur, as well as Al(OH)3 formation, as confirmed by XPS analysis. Due to the presence of Cl-ions in SAR solution, localized corrosion was observed, suggested as fractional Gaussian noise of a stationary and persistent process in time, according to the PSD of the corrosion current fluctuations (EN).

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference105 articles.

1. Metallurgy and alloys;Avedesian,1999

2. Increase of Mechanical Strength of a Mg85Zn12Ce3 Amorphous Alloy by Dispersion of Ultrafine hcp-Mg Particles

3. Magnesium alloys;Polmear,2017

4. The current state of technology and potential for futher development of magnesium applications;Kainer,2003

5. The climate response to five trillion tonnes of carbon

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3