Abstract
Magnesium (Mg) alloys have unique properties. However, their applications are limited in working environments due to their poor corrosion resistance. Plasma electrolytic oxidation (PEO) is one of the most environmentally friendly and cost-effective ways that has been promoted to treat Mg alloys. In this study, we investigated the effect of electrical parameters on the microstructure, as well as the mechanical and corrosion resistance of AM60 alloy coated with PEO. The electrical parameters studied were current mode (unipolar and bipolar), frequency and duty ratio. The microstructure evolution of the coated AM60 substrates was studied using X-ray diffraction and scanning electron microscopy. Subsequently, the mechanical properties were determined using compression tests and microhardness measurements. The potentiodynamic polarization curves indicated that the PEO-coated samples experienced a significant decrease of 99.9% in the corrosion rate compared to the base metal. The electrochemical impedance spectroscopy findings showed that PEO coating increased the corrosion resistance of the AM60 magnesium alloy by 1071870% compared to the base metal. On the other hand, the PEO coated samples showed superior adhesion to the substrate. Moreover, the PEO coating led to an improvement in the hardness value by 114% compared to base metal, coupled with insignificant change in the compressive properties.
Subject
General Materials Science,Metals and Alloys
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献