Selective Extraction of Ni from Superalloy Scraps by Molten Mg-Zn

Author:

Tian Qinghua,Gan Xiangdong,Cui FuhuiORCID,Yu DaweiORCID,Guo Xueyi

Abstract

Bearing significant concentrations of high value and critical metals, superalloy scraps require comprehensive recycling for metal reclamation. In this study, nickel-based superalloy was treated with molten Mg-Zn for the selective extraction of nickel. The influence of heating temperature, the molar ratio of Mg to Zn in the molten metal, Mg-Zn/superalloy mass ratio, and heating time on metal extraction were investigated. Using the heating temperature of 800 °C, the Mg/Zn molar ratio of 9/1, the Mg-Zn/superalloy mass ratio of 5/1, and heating time of 240 min, the extraction rate of 97.1% was achieved for Ni, and the extraction rates of Fe, Cr and refractory metals (Nb, Mo and Ti) were all less than 1%. In the subsequent vacuum distillation process, nickel with a purity of 98.3 wt% was obtained. Therefore, the proposed method is a short, clean, and efficient process for selectively extracting nickel from the superalloy scraps.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Key Research and Development Program of Hunan Province of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference39 articles.

1. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review

2. Exploration laterite-nickel ore and analysis on utilization technology;Zhu;World Nonferrous Metals,2007

3. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties

4. Research progress on recycling technology of indissoluble alloy with high melting point;Feng;Hydrometall. China,2012

5. Superalloys: A Technical Guide;Donachie,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3