Acid Mine Drainage Dynamics from a Paste Tailing Deposit: Effect of Sulfate Content on the Consistency and Chemical Stability after Storage

Author:

Leiva EduardoORCID,Cayazzo María,Dávila Luis,Torres Mario,Ledezma ChristianORCID

Abstract

Surface paste tailings’ disposal has emerged recently as an optimal and efficient method to favor tailings’ self-containment after being deposited into dams. This disposal method can improve the reuse of water and reduce the generation of acid mine drainage (AMD) and the release of leachates (e.g., acid and heavy metals). However, the implications of chemical factors or mixed-water chemistry in the stability of paste tailings over time are not clear. In this work, we evaluated the release of sulfate from tailing samples and the role of sulfate as a critical factor in the tailings’ strength, consistency, and stability. Our results showed that the release of acid runoff with high sulfate load from the tailings is negligible. Leaching tests were performed for 180 days and did not show a significant release of sulfate, heavy metals, or acid waters. However, the presence of sulfate salts derived from the binders used in the pretreatment of the paste tailings shows an impact on the tailings’ consistency. Undrained triaxial monotonic compression tests revealed low effective cohesion forces in the tailings samples. In addition, it was observed that, in tailings slurries prepared with varying concentrations of sulfate (0, 500, and 1000 mg/L), the slump test value dropped Δ−55% when the sulfate concentration increased from 0 to 1000 mg/L. These results support the idea that the presence of sulfate within the tailings could be relevant for the paste consistency after storage. This knowledge will contribute to a better understanding of the critical chemical factors that affect the stability of paste tailings over time.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference82 articles.

1. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation

2. Application of paste technology to surface disposal of mineral wastes;Cincilla,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3