Microstructural Evolution of 9CrMoW Weld Metal in a Multiple-Pass Weld

Author:

Chuang Yu-Lun,Wang Chu-Chun,Chen Tai-ChengORCID,Shiue Ren-KaeORCID,Tsay Leu-WenORCID

Abstract

9CrMoW steel tubes were welded in multiple passes by gas-tungsten arc welding. The reheated microstructures in the Gr. 92 weld metal (WM) of a multiple-pass weld were simulated with an infrared heating system. Simulated specimens after tempering at 760 °C/2 h were subjected to constant load creep tests either at 630 °C/120 MPa or 660 °C/80 MPa. The simulated specimens were designated as the over-tempered (OT, below AC1, i.e., WT-820T) and partially transformed (PT, below AC3, i.e., WT-890T) samples. The transmission electron microscope (TEM) micrographs demonstrated that the tempered WM (WT) displayed coarse martensite packets with carbides along the lath and grain boundaries. Cellular subgrains and coarse carbides were observed in the WT-820T sample. A degraded lath morphology and numerous carbides in various dimensions were found in the WT-890T sample. The grain boundary map showed that the WT-820T sample had the same coarse-grained structure as the WT sample, but the WT-890T sample consisted of refined grains. The WT-890T samples with a fine-grained structure were more prone to creep fracture than the WT and WT-820T samples were. Intergranular cracking was more likely to occur at the corners of the crept samples, which suffered from high strain and stress concentration. As compared to the Gr. 91 steel or Gr. 91 WM, the Gr. 92 WM was more stable in maintaining its original microstructures under the same creep condition. Undegraded microstructures of the Gr. 92 WM strained at elevated temperatures were responsible for its higher resistance to creep failure during the practical service.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3