Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation

Author:

Zhang Chengcheng12,Liu Guanshi1ORCID,Tian Shengkui12,Cai Mingxuan12

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. Guangxi Key Laboratory of Rock and Soil Mechanics and Engineering, Guilin University of Technology, Guilin 541004, China

Abstract

The passive soil arching effect exists in many soil–grille interaction systems. Increasing mental grillage foundations are used for transmission lines in aeolian sand areas; thus, exploring the evolution mechanism of passive soil arching is crucial. This study investigates the evolution and influencing factors of passive soil arching through a series of tests using a trapdoor device and particle image velocimetry (PIV). The test results show that the evolution of the arching structure causes the aeolian sand deformation to gradually extend to the backfill surface and stationary zone, generating two triangular arching surfaces between the movable beams and sliding surface at the junction of the active and stationary zones. Cracks in the arching and sliding surfaces were connected to form a W-shaped shear band. The development of the soil pressure was divided into four arching structure stages. The different stages of the inner and outer arches of the bearing characteristics had strong differences. Taking the appearance of the first arch surface as the time point, the soil pressure changes abruptly and the inner and outer arches alternate to bear the as a major role. The beam spacing significantly affected the arching evolution. A smaller beam spacing formed an initial bending configuration with an inconspicuous arching structure and incomplete shear band. As the beam spacing increased, the arching shape changed from triangular to parabolic, sudden changes in the soil pressure were more pronounced, and the arch height increased. The relative density and water content had little impact on the arch shape and shear zone but significantly affected the arching strength, soil pressure transfer, and arching height. The medium and high relative densities and low water contents resulted in a stronger arching structure and greater arching height, while low relative densities and high water contents weakened the soil pressure transfer. The range values for the optimum beam spacing, relative density, and water contents are given based on the variation characteristics of the evaluated parameters (E, n) under different conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Sediment transport characteristics above a gobi surface in northwestern China, and implications for aeolian environments;Zhang;Aeolian Res.,2021

2. Layout optimization of China’s power transmission lines for renewable power integration considering flexible resources and grid stability;Yu;Int. J. Electr. Power Energy Syst.,2022

3. Empirical evidence based effectiveness assessment of policy regimes for wind power development in China;Liu;Renew. Sustain. Energy Rev.,2022

4. Lake, R. (2012, January 26–31). Full scale tower and foundation tests help to identify reliability of existing lines and gives guidance of likely dynamic tower/foundation interaction behavior. Proceedings of the CIGRE Session, Paris, France.

5. Simplified Design of Grillage Foundations;Novotny;Civ. Eng. J.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3