Abstract
Background: This study aimed to develop an algorithm for multilabel classification according to the distance from carina to endotracheal tube (ETT) tip (absence, shallow > 70 mm, 30 mm ≤ proper ≤ 70 mm, and deep position < 30 mm) with the application of automatic segmentation of the trachea and the ETT on chest radiographs using deep convolutional neural network (CNN). Methods: This study was a retrospective study using plain chest radiographs. We segmented the trachea and the ETT on images and labeled the classification of the ETT position. We proposed models for the classification of the ETT position using EfficientNet B0 with the application of automatic segmentation using Mask R-CNN and ResNet50. Primary outcomes were favorable performance for automatic segmentation and four-label classification through five-fold validation with segmented images and a test with non-segmented images. Results: Of 1985 images, 596 images were manually segmented and consisted of 298 absence, 97 shallow, 100 proper, and 101 deep images according to the ETT position. In five-fold validations with segmented images, Dice coefficients [mean (SD)] between segmented and predicted masks were 0.841 (0.063) for the trachea and 0.893 (0.078) for the ETT, and the accuracy for four-label classification was 0.945 (0.017). In the test for classification with 1389 non-segmented images, overall values were 0.922 for accuracy, 0.843 for precision, 0.843 for sensitivity, 0.922 for specificity, and 0.843 for F1-score. Conclusions: Automatic segmentation of the ETT and trachea images and classification of the ETT position using deep CNN with plain chest radiographs could achieve good performance and improve the physician’s performance in deciding the appropriateness of ETT depth.
Funder
the National Research Foundation of Korea
Reference32 articles.
1. Endobronchial intubation detected by insertion depth of endotracheal tube, bilateral auscultation, or observation of chest movements: randomised trial
2. Radiographic evaluation of endotracheal tube position
3. The Trauma Manual: Trauma and Acute Care Surgery;Peitzman,2019
4. The ICU Chest Radiograph: Line and Tube Essentials for Radiologists and ICU Physicians 2019: European Congress of Radiology-ECR 2019
https://epos.myesr.org/poster/esr/ecr2019/C-3024
5. Endobronchial Intubation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献