Spatiotemporal Variation of Riverine Dissolved Organic Matter Degradation Based on EEMs-PARAFAC: A Case Study of Shili River in Jiujiang, Jiangxi Province, China, as a Typical Demonstration City of the Yangtze River protection Strategy

Author:

Li Xiaxia,Yuan Keting,Chai BeibeiORCID,Chen Jianghai,Chen Ruihong,Chen Xiang,Kang Aiqing,Li MingORCID,Lei Xiaohui

Abstract

This study investigated the spatio-temporal distribution of dissolved organic matter (DOM) composition and its sources before and after degradation in the Shili River watershed in Jiujiang (China). Spatio-temporal variation of riverine DOM water samples before and after five days of degradation in a simulated channel was characterized by spectral feature analysis using three-dimensional excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis. Across all water samples (#1,#2 and #3) before and after degradation, a total of four fluorescent components in DOM were identified: C1, C2, C3, and C4. The aromaticity index (SUVA254) was negatively correlated with the C2 and C3 components and biological index (BIX) and freshness index (β:α), but it had little correlation with the humification index (HIX). The greater the aromaticity of DOM in water, the lower the proportion of recently produced DOM and its biological activity. The C3 component had a strong positive correlation with BIX, β:α, and C2. The results suggested that C2 and C3 were derived from the same substances. According to the fluorescence parameters, DOM was dominated by autochthonous contributions. The fluorescence intensity of DOM increased gradually along the direction of water flow. The increase of water temperature in spring and autumn enhanced the endogenous level of DOM. The levels and fluctuations of BIX and β:α in different seasons and different sampling points were basically consistent. DOC concentration does not fully represent the localized nature of the DOM. The analysis of some fluorescence parameters and light absorption parameters showed that the DOM source was more internal than terrestrial. This study reveals the composition, source and temporal and spatial characteristics of DOM in the Shili River Basin, which has theoretical guiding significance for water environment management.

Funder

Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Hebei Province

he Foundation of China Three Gorges Corporation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes;Zhou;Water Res.,2019

2. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments;Zhang;J. Environ. Manag.,2021

3. Modeling the acidbase chemistry of organic solutes in Adirondack, New York, lakes;Driscoll;Water Resour. Res.,1994

4. Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China;Gu;Environ. Pollut.,2020

5. Spectral characteristics and environmental significance of chromophoric dissolved organic matter in Lake Qiandao, a large drinking water reservoir;Li;Acta Sci. Circumstantiae,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3