Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem

Author:

Mavrovouniotis Michalis12ORCID,Anastasiadou Maria N.1,Hadjimitsis Diofantos12

Affiliation:

1. ERATOSTHENES Centre of Excellence, 3012 Limassol, Cyprus

2. Department of Civil Engineering and Geomatics, Cyprus University of Technology, 3036 Limassol, Cyprus

Abstract

Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.

Funder

‘EXCELSIOR’ project

‘AI-OBSERVER’ project

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference40 articles.

1. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem;Dorigo;IEEE Trans. Evol. Comput.,1997

2. Ant Algorithms for Discrete Optimization;Dorigo;Artif. Life,1999

3. Colorni, A., Dorigo, M., and Maniezzo, V. (1991, January 13). Distributed optimization by ant colonies. Proceedings of the European Conference on Artificial Life, Paris, France.

4. Mavrovouniotis, M., Ellinas, G., and Polycarpou, M. (2019, January 10–13). Electric Vehicle Charging Scheduling Using Ant Colony System. Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand.

5. Dynamic vehicle routing: A memetic ant colony optimization approach;Uyar;Automated Scheduling and Planning,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3