Computationally Efficient Continuous-Time Model Predictive Control of a 2-DOF Helicopter via B-Spline Parameterization

Author:

Rohaľ-Ilkiv Boris1ORCID,Gulan Martin1ORCID,Minarčík Peter12ORCID

Affiliation:

1. Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, 812 31 Bratislava, Slovakia

2. Prosystemy, s.r.o. (Ltd.), 900 86 Budmerice, Slovakia

Abstract

This paper investigates one way to reduce the computational burden of continuous-time model predictive control (MPC) laws by representing the input/output signals and related models using B-spline functions. Such an approximation allows to implement the resulting feedback control law more efficiently, requiring less online computational effort. As a result, the proposed controller formulates the control signals as continuous polynomial spline functions. All constraints assumed over the prediction horizon are then expressed as constraints acting on the B-splines control polygon vertices. The performance of the proposed theoretical framework has been demonstrated with several real-time experiments using the well-known 2-DOF laboratory helicopter setup. The aim of the presented experiments was to track given step-like reference trajectories for pitch and yaw angles under notable parameter uncertainties. In order to suppress the influence of uncertainties, the control algorithm is implemented in an adaptive mode, equipped with the recursive least squares (RLS) estimation of model parameters and with the adaptation of stabilizing terminal set and terminal cost calculations. Thanks to the presented framework, it is possible to significantly reduce the computational burden, measured by the number of decision variables and input constrains, indicating the potential of the proposed concept for real-time applications, even when using embedded control hardware.

Funder

Slovak Research and Development Agency

Cultural and Educational Grant Agency of the Ministry of Education of Slovak Republic

European Union’s Horizon Europe

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3