Systems Analysis for Peptide Systems Chemistry

Author:

Grover Martha A.ORCID,Hsieh Ming-Chien,Lynn David G.ORCID

Abstract

Living systems employ both covalent chemistry and physical assembly to achieve complex behaviors. The emerging field of systems chemistry, inspired by these biological systems, attempts to construct and analyze systems that are simpler than biology, while still embodying biological design principles. Due to the multiple phenomena at play, it can be difficult to predict which phenomena will dominate and when. Conversely, there may be no single rate-limiting step, but rather a reaction network that is difficult to intuit from a purely experimental approach. Mathematical modeling can help to sort out these issues, although it can be challenging to build such models, especially for assembly kinetics. Numerical and statistical methods can play an important role to facilitate the synergistic and iterative use of modeling and experiment, and should be part of a systems chemistry curriculum. Three case studies are presented here, from our work in peptide-based systems, to illustrate some of the tools available for model construction, model simulation, and experimental design. Examples are provided in which these tools help to evaluate hypotheses, uncover design principles, and design new experiments.

Funder

James S. McDonnell Foundation

National Science Foundation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3