Wet-Dry Cycling Delays the Gelation of Hyperbranched Polyesters: Implications to the Origin of Life

Author:

Mamajanov Irena

Abstract

In extant biology, biopolymers perform multiple crucial functions. The biopolymers are synthesized by enzyme-controlled biosystems that would not have been available at the earliest stages of chemical evolution and consist of correctly sequenced and/or linked monomers. Some of the abiotic “messy” polymers approximate some functions of biopolymers. Condensation polymers are an attractive search target for abiotic functional polymers since principal polymers of life are produced by condensation and since condensation allows for the accurate construction of high polymers. Herein the formation of hyperbranched polyesters that have been previously used in the construction of enzyme-like catalytic complexes is explored. The experimental setup compares between the branched polyesters prepared under mild continuous heating and the wet-dry cycling associated with environmental conditions, such as dew formation or tidal activities. The results reveal that periodic wetting during which partial hydrolysis of the polyester occurs, helps to control the chain growth and delays the gel transition, a mechanism contributing to the tar formation. Moreover, the NMR and mass spec analyses indicate that continuously dried samples contain higher quantities of crosslinked and macrocyclic products, whereas cycled systems are enriched in branched structures. Ostensibly, environmental conditions have the ability to exert a rudimentary pressure to selectively enrich the polyesterification products in polymers of different structures and properties. At the early stages of chemical evolution, in the absence of biological machinery, this example of environmental control could have been for selectivity in chemical systems. As expected in marginally controlled systems, the identification of each component of the heterogeneous system has proved challenging, but it is not crucial for drawing the conclusions.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3