Groundwater Vulnerability and Delineation of Protection Zones in the Discharge Area of a Karstic Aquifer—Application in Agyia’s Karst System (Crete, Greece)

Author:

Steiakakis EmmanouilORCID,Vavadakis Dionysios,Mourkakou Ourania

Abstract

This work represents a contribution to the protection techniques of karst aquifers against groundwater pollution. The paper sets out the methodology being introduced for the protection of the karstic system that gives rise to five (5) major groups of springs and supplies fourteen (14) pumping wells near Agyia Chania (Crete, Greece). Starting from a geological and hydrogeological survey of the area, the work presents a vulnerability assessment of the karstic aquifer based on the application of three index-based methods (EPIK, PRESK and DRISTPI). The protection zones for the discharge area of the aquifer were delineated through an integrated geomorphological approach and groundwater flow modeling. At first, the risk of polluting substances migration from ground surface to groundwater was considered based on the spatial distribution of vulnerability. Following this, the vulnerability was evaluated in the saturated zone, where the attenuation mechanisms of contaminants were reducing due to the raised flow velocity. The groundwater flow and contaminant transport processes was considered using the MODFLOW code. Next, the data from the vulnerability mapping and the groundwater flow simulation were merged into an integrated assessment to delimit the protection zones for the water abstraction points. The vulnerability assessment outlines zones of high vulnerability in the SE part of the area, far away from the discharge zone of the aquifer and the water abstraction points. These zones are associated with an intensive infiltration process via carbonate formations. Protection Zone I was delineated 20 m around the water abstraction points, and it should be excluded from any anthropogenic activity. Protection Zone II coves part of the very high and high vulnerability zones defined by the DRISTPI method (located upwards of the water abstraction points), as well as an area downwards of springs and wells, where the flow path lines which demonstrate the subsurface travelling time of 50 days are projected to the ground surface. Protection Zone III extends outside Zone Ι and Zone ΙΙ, up to the limits of the hydrogeological or hydrological basin, whichever is larger. It includes the entire capture zone (i.e., the surface and underground catchment area) that feeds the water abstraction points. In this manner the protection zones include the entire contributing area to water abstraction points, not just the ground surface recharge zone.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference55 articles.

1. Schmoll, O., Howard, G., Chilton, J., and Chorus, I. (2006). Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources.

2. Schmoll, O., Howard, G., Chilton, J., and Chorus, I. (2006). Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources, IWA Publishing.

3. Determination of protection zones in drinking water basins: A case study from Turkey, Sapanca Lake Basin;Environ. Earth Sci.,2020

4. Contribution of geographic information systems in protection zones delineation around a surface water resource in Adzope Region (Southeast of Cτte d’Ivoire);Deh;J. Environ. Prot.,2017

5. Evaluation of groundwater vulnerability by using modeling and GIS techniques in El-Bahariya Oasis—Western Desert—Egypt;Masoud;J. Earth Syst. Sci.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3