Abstract
Product quality is an important part of enterprise competitiveness. Product processing is the key process of quality formation. In smart factories, the improvement of data acquisition and processing capability provides a basis for data-based quality control. In order to reduce the occurrence of product quality problems, we abstracted the product processing process as a data processing unit, abstracted the process of changing the product quality state as a process of the processing quality characteristics data, divided the measured value of quality characteristics into three states according to the fluctuation of the measured value of product quality characteristics, and then the classification model of process equipment parameters was established. The experimental results show that the error rate of the real-time dynamic prediction of quality characteristics based on equipment parameters was acceptable, and its prediction could be used as a reference in real production. The research could be applied in product quality prediction, production process simulation, digital twin and other fields.
Funder
the National Numerical Control (NC) Machine Project of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献