Silica Particles Derived from Natural Kaolinite for the Removal of Rhodamine B from Polluted Water

Author:

Celoria Giorgio,Miglio VanessaORCID,Paul GeoORCID,Bisio ChiaraORCID,Golemme GiovanniORCID,Boccaleri EnricoORCID

Abstract

This manuscript deals with the thermal and chemical modification of a natural kaolinite that shows excellent performance in the capture of a cationic organic pollutant from the aqueous phase. Kaolinite was calcined at 700 °C and treated with HCl to remove aluminium and to obtain a siliceous material. The structural changes and the physico-chemical properties of the materials at different stages of thermal and chemical modification were investigated with several techniques, including XRPD, MAS-NMR, SEM-EDX, FT-IR, and N2 physisorption at 77 K. The ability of the parent kaolinite and siliceous material to capture the organic dye, Rhodamine B, from the aqueous phase was investigated by means of UV-Vis spectroscopy. The siliceous material exhibited better adsorption capacity with respect to the parent kaolinite. Finally, the functional stability of the siliceous material was tested over three cycles of regeneration and adsorption.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3