Study on the Temporal and Spatial Multiscale Coupling Flow of Shale Oil

Author:

Li BinglinORCID,Su Yuliang,Lu Mingjing

Abstract

Shale oil is one of the world’s most important strategic energy reserves. The microscopic kerogen and matrix structure plays an important role in fluid flow and diffusion processes. The oil flow time in the shale reservoir is determined by the pore spatial scale. An accurate shale reservoir flow model must consider these factors. In this research, fluid flow, Fick’s diffusion in consideration of the time delay effect, desorption, as well as the absorption are considered using the molecular momentum correlation and the partial pressure law of the components. The effect of the above-mentioned factors on the time scale contribution of the well rate is discussed. The spatial distribution diagram of the time scale is constructed and analyzed. The results show that the production process is composed of five periods. The time delay effect is reflected by fluctuations in the production at periods 1–3. The time scale corresponds to different mediums. The oil mainly flows through the outer boundary of the stimulated region through surface diffusion. The time scale spatial distribution diagram also shows that the oil flows into the endpoint of the hydraulic fracture at an early stage. Moreover, the outer boundary needs a longer time to be exploited. The proposed model improves the simulation of shale oil flow, and therefore, would be favorable in designing a more suitable working system.

Funder

National Science Foundation, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3