Investigation of the Relation between Temperature and M13 Phage Production via ATP Expenditure

Author:

Choi Young KyunORCID,Han Sang MinORCID,Lee Sang MinORCID,Soh Jeong OokORCID,Lee Seung Kyu,Lee Ju HunORCID

Abstract

M13 bacteriophage is a promising biomolecule capable of various bionano and material science applications. The biomaterial can self-assemble into matrices to fabricate bioscaffolds using high phage concentration and high phage purity. Previous studies aimed to acquire these conditions in large-scale phage production and have identified the optimal culture temperature range at 28–31 °C. However, explanations as to why this temperature range was optimal for phage production is absent from the work. Therefore, in this study, we identified the relation between culture temperature and M13 phage production using ATP expenditure calculations to comprehend the high yield phage production at the optimal temperature range. We extended a coarse-grained model for the evaluation of phage protein and ribosomal protein synthesis with the premise that phage proteins (a ribosomal protein) are translated by bacterial ribosomes in E. coli through expenditure of ATP energy. By comparing the ATP energy for ribosomal protein synthesis estimated using the coarse-grained model and the experimentally calculated ATP expenditure for phage production, we interpreted the high phage yield at the optimal temperature range and recognized ATP analysis as a reasonable method that can be used to evaluate other parameters for phage production optimization.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3