Real-Time Optimization of Wastewater Treatment Plants via Constraint Adaptation

Author:

Haq Ahteshamul,Srinivasan BabjiORCID,Bonvin DominiqueORCID

Abstract

An important requirement of wastewater treatment plants (WWTPs) is compliance with the local regulations on effluent discharge, which are going to become more stringent in the future. The operation of WWTPs exhibits a trade-off between operational cost and effluent quality, which provides a scope for optimization. Process optimization is usually done by optimizing a model of the process. However, due to inevitable plant–model mismatch, the computed optimal solution is usually not optimal for the plant. This study represents the first attempt to handle plant–model mismatch via constraint adaptation (CA) for the real-time optimization of WWTPs. In this simulation study, the “plant” is a model adopted from the BSM1 benchmark, while a reduced-order “model” is used for making predictions and computing the optimal inputs. A first implementation uses steady-state measurements of the plant constraints to adjust the model in the optimization framework. A fast CA technique is also proposed, which adjusts the model using transient measurements. It is observed that, even in the presence of significant plant–model mismatch, the two proposed techniques are able to meet the active plant constraints. These techniques are found to reduce the pumping and aeration energy by 20%, as compared to that adopted in BSM1.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3