Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain

Author:

Uchida TakanoriORCID,Sugitani Kenichiro

Abstract

Our research group is developing computational fluid dynamics (CFD)-based software for wind resource and energy production assessments in complex terrain called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University (RIAM)-Computational Prediction of Airflow over Complex Terrain), based on large eddy simulation (LES). In order to verify the prediction accuracy of RIAM-COMPACT, we conduct a wind tunnel experiment that uses a two-dimensional steep ridge model with a smooth surface. In the wind tunnel experiments, airflow measurements are performed using an I-type hot-wire probe and a split film probe that can detect forward and reverse flows. The results of the numerical simulation by LES are in better agreement with the wind tunnel experiment using the split film probe than the results of the wind tunnel experiment using the I-type hot wire probe. Furthermore, we calculate that the two-dimensional ridge model by changing the length in the spanwise direction, and discussed the instantaneous flow field and the time-averaged flow field for the three-dimensional structure of the flow behind the model. It was shown that the eddies in the downwind flow-separated region formed behind the two-dimensional ridge model were almost the same size in all cases, regardless of the difference in the length in the spanwise direction. In this study, we also perform a calculation with a varying inflow shear at the inflow boundary. It was clear that the size in the vortex region behind the model was almost the same in all the calculation results, regardless of the difference in the inflow shear. Next, we conduct wind tunnel experiments on complex terrain. In the wind tunnel experiments using a 1/2800 scale model, the effect of artificial irregularities on the terrain surface did not significantly appear on the airflow at the hub height of the wind turbine. On the other hand, in order to investigate the three-dimensional structure of the airflow in the swept area in detail, it was clearly shown that LES using a high-resolution computational grid is very effective.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3