Interface Damages of Electrical Insulation in Factory Joints of High Voltage Submarine Cables

Author:

Zhang Zhen-Peng,Zheng Chang-Ji,Zheng Mei,Zhao Hong,Zhao Jian-Kang,Sun Wei-Feng,Chen Jun-QiORCID

Abstract

As a key accessory of high-voltage (HV) insulated submarine cable, the factory joints of the cross-linked polyethylene (XLPE) represent an unpredictable uncertainty in cable-connecting fabrications by means of the extruded molding joint (EMJ) technique. The electrical breakdown pathways formed at the interfaces between recovery insulation and cable body under alternative current 500 kV voltages are specifically investigated by microstructure characterizations in combination with the electric field and fractal simulations. Dielectric-defected cracks in tens of micrometers in insulation interfaces are identified as the strings of voids, which dominate insulation damages. The abnormal arrangements of XLPE lamellae from scanning electron microscopy (SEM) imply that the structural micro-cracks will be formed under interface stresses. Electrical-tree inception is expedited to a faster propagation due to the poor dielectric property of interface region, manifesting as 30% lower of tree inception voltage. The longer free-paths for accelerating charge carriers in the cracks of interface region will stimulate partial discharging from needle electrodes. The carbonized discharging micro-channels arising in interface region illustrate that the partial discharging will be triggered by the electrical-trees growing preferentially along the defect cracks and could finally develop into insulation damages. The mechanism of forming cracks in the fusion processes between the molten XLPE of cable body and the molten cross-linkable PE of recovery insulation is elucidated, according to which the crack-caused degradation of insulation performance is expected to be alleviated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Development of high voltage direct current extruded cables;Zhong;High Volt. Eng.,2017

2. The prospect of development of DC submarine cables in China;Ying;Electr. Wire Cable,2012

3. Key technical analysis and prospect of high voltage and extra-high voltage power cable;Zhou;High Volt. Eng.,2014

4. Factors influencing the tangential AC breakdown strength of solid-solid interfaces

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3