Cooperative Game-Based Synergistic Gains Allocation Methods for Wind-Solar-Hydro Hybrid Generation System with Cascade Hydropower

Author:

Zhang Liqin,XIE JunORCID,CHEN Xingying,Zhan Yongsheng,Zhou Lv

Abstract

In order to encourage hybrid generation of multiple wind/solar/hydro power stakeholders, synergistic gains from hybrid generation should be allocated fairly, efficiently and reasonably to all power stakeholders. This paper explores how cooperative game theory resolves conflicts among multiple wind/solar/hydro power stakeholders. Elaborate allocation processes of the nucleolus, Shapley value and MCRS methods are presented in resolve synergistic gains allocation problems of wind–solar–hydro hybrid generation system with cascade hydropower. By analyzing properties such as existence, uniqueness and rationality, we find that both the Shapley value and MCRS methods are fair, efficient and rational allocation methods whereas the nucleolus method is limited by reservoir volume of hydro power stakeholders. Analyses on computational feasibility show that the Shapley value method may induce combinational explosion problem with the integration of more power stakeholders. A further application in Yalong River basin demonstrates that, compared with the Shapley value method, the MCRS method significantly simplifies allocating process and improves computational efficiency. Therefore, the MCRS method is recommend as a fair, efficient, rational and computational feasible allocation method for hybrid generation system with large number of wind/solar/hydro power stakeholders.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3