Progressively Discriminative Transfer Network for Cross-Corpus Speech Emotion Recognition

Author:

Lu Cheng,Tang Chuangao,Zhang Jiacheng,Zong Yuan

Abstract

Cross-corpus speech emotion recognition (SER) is a challenging task, and its difficulty lies in the mismatch between the feature distributions of the training (source domain) and testing (target domain) data, leading to the performance degradation when the model deals with new domain data. Previous works explore utilizing domain adaptation (DA) to eliminate the domain shift between the source and target domains and have achieved the promising performance in SER. However, these methods mainly treat cross-corpus tasks simply as the DA problem, directly aligning the distributions across domains in a common feature space. In this case, excessively narrowing the domain distance will impair the emotion discrimination of speech features since it is difficult to maintain the completeness of the emotion space only by an emotion classifier. To overcome this issue, we propose a progressively discriminative transfer network (PDTN) for cross-corpus SER in this paper, which can enhance the emotion discrimination ability of speech features while eliminating the mismatch between the source and target corpora. In detail, we design two special losses in the feature layers of PDTN, i.e., emotion discriminant loss Ld and distribution alignment loss La. By incorporating prior knowledge of speech emotion into feature learning (i.e., high and low valence speech emotion features have their respective cluster centers), we integrate a valence-aware center loss Lv and an emotion-aware center loss Lc as the Ld to guarantee the discriminative learning of speech emotions except an emotion classifier. Furthermore, a multi-layer distribution alignment loss La is adopted to more precisely eliminate the discrepancy of feature distributions between the source and target domains. Finally, through the optimization of PDTN by combining three losses, i.e., cross-entropy loss Le, Ld, and La, we can gradually eliminate the domain mismatch between the source and target corpora while maintaining the emotion discrimination of speech features. Extensive experimental results of six cross-corpus tasks on three datasets, i.e., Emo-DB, eNTERFACE, and CASIA, reveal that our proposed PDTN outperforms the state-of-the-art methods.

Funder

the Scientific Research Foundation of Graduate School of Southeast University

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3