Fault Detection and Isolation of the Multi-Sensor Inertial System

Author:

Liang HaoORCID,Guo Yu,Zhao Xingfa

Abstract

In order to solve the problem that the generalized likelihood test method cannot isolate the single fault of the four-gyro system and the double faults of the six-gyro system, a fault detection and isolation method combining the generalized likelihood test method with the residual error of the metabolism grey model is presented. The problem of isolating the single fault of the four-gyro system and the double faults of the six-gyro system using the generalized likelihood test method is analyzed. The method and process of fault detection and isolation are designed. The validity of the method presented in this paper is verified by simulation tests of the single fault of the four-gyro system and the double faults of the six-gyro system. By comparing the isolation performance with the generalized likelihood test method, it is proved that the isolation performance of the method proposed in this paper is better than that of the generalized likelihood test method. The method mentioned in this paper can effectively realize fault detection and isolation of the multi-gyro system and improve the inertial system’s reliability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3