Femtosecond Laser-Pulse-Induced Surface Cleavage of Zinc Oxide Substrate
-
Published:2021-05-21
Issue:6
Volume:12
Page:596
-
ISSN:2072-666X
-
Container-title:Micromachines
-
language:en
-
Short-container-title:Micromachines
Author:
Yu Xi,Itoigawa Fumihiro,Ono Shingo
Abstract
The induction of surface cleavage along the crystalline structure of a zinc oxide substrate (plane orientation: 0001) by femtosecond laser pulses (wavelength: 1030 nm) has been reported; a scanning electron microscope image of the one-pulse (pulse energy: 6–60 μJ) irradiated surface shows very clear marks from broken hexagons. This cleavage process differs from the general laser-induced melt process observed on the surfaces of narrower-bandgap semiconductors and other metal materials. This phenomenon is discussed using a multi-photon absorption model, and the pulse-energy dependence of the cleavage depth (less than 3 μm) is quantitatively analyzed. Laser-induced cleavage is found not to occur under multi-pulse irradiation; when more than four pulses are irradiated upon the same spot, the general laser-induced melt process becomes dominant. This cleavage–melt shift is considered to be caused by the enhancement of absorption due to the initial pulses, which is supported by our measurement of cathodoluminescence.
Funder
Amada Foundation
the Strategic Foundational Technology Improvement Support Operation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献