Femtosecond Laser-Pulse-Induced Surface Cleavage of Zinc Oxide Substrate

Author:

Yu Xi,Itoigawa Fumihiro,Ono Shingo

Abstract

The induction of surface cleavage along the crystalline structure of a zinc oxide substrate (plane orientation: 0001) by femtosecond laser pulses (wavelength: 1030 nm) has been reported; a scanning electron microscope image of the one-pulse (pulse energy: 6–60 μJ) irradiated surface shows very clear marks from broken hexagons. This cleavage process differs from the general laser-induced melt process observed on the surfaces of narrower-bandgap semiconductors and other metal materials. This phenomenon is discussed using a multi-photon absorption model, and the pulse-energy dependence of the cleavage depth (less than 3 μm) is quantitatively analyzed. Laser-induced cleavage is found not to occur under multi-pulse irradiation; when more than four pulses are irradiated upon the same spot, the general laser-induced melt process becomes dominant. This cleavage–melt shift is considered to be caused by the enhancement of absorption due to the initial pulses, which is supported by our measurement of cathodoluminescence.

Funder

Amada Foundation

the Strategic Foundational Technology Improvement Support Operation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Static Hydrophobic Cuprous Oxide Surface Fabricated via One-Step Laser-Induced Oxidation of a Copper Substrate;Micromachines;2023-01-11

2. Surface Cleavage of Zinc Oxide Induced by Femtosecond Laser Irradiation;2022 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR);2022-07-31

3. Surface cleavage of zinc oxide induced by femtosecond laser irradiation;Proceedings of the 2022 Conference on Lasers and Electro-Optics Pacific Rim;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3