Classification of Different Winter Wheat Cultivars on Hyperspectral UAV Imagery

Author:

Lyu Xiaoxuan1,Du Weibing123ORCID,Zhang Hebing1,Ge Wen234,Chen Zhichao1,Wang Shuangting123

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. Collaborative Innovation Center of Geo-Information Technology for Smart C Entral Plains, Zhengzhou 450045, China

3. Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450045, China

4. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China

Abstract

Crop phenotype observation techniques via UAV (unmanned aerial vehicle) are necessary to identify different winter wheat cultivars to better realize their future smart productions and satisfy the requirement of smart agriculture. This study proposes a UAV-based hyperspectral remote sensing system for the fine classification of different winter wheat cultivars. Firstly, we set 90% heading overlap and 85% side overlap as the optimal flight parameters, which can meet the requirements of following hyperspectral imagery mosaicking and spectral stitching of different winter wheat cultivars areas. Secondly, the mosaicking algorithm of UAV hyperspectral imagery was developed, and the correlation coefficient of stitched spectral curves before and after mosaicking reached 0.97, which induced this study to extract the resultful spectral curves of six different winter wheat cultivars. Finally, the hyperspectral imagery dimension reduction experiments were compared with principal component analysis (PCA), minimum noise fraction rotation (MNF), and independent component analysis (ICA); the winter wheat cultivars classification experiments were compared with support vector machines (SVM), maximum likelihood estimate (MLE), and U-net neural network ENVINet5 model. Different dimension reduction methods and classification methods were compared to get the best combination for classification of different winter wheat cultivars. The results show that the mosaicked hyperspectral imagery effectively retains the original spectral feature information, and type 4 and type 6 winter wheat cultivars have the best classification results with the classification accuracy above 84%. Meanwhile, there is a 30% improvement in classification accuracy after dimension reduction, the MNF dimension reduction combined with ENVINet5 classification result is the best, its overall accuracy and Kappa coefficients are 83% and 0.81, respectively. The results indicate that the UAV-based hyperspectral remote sensing system can potentially be used for classifying different cultivars of winter wheat, and it provides a reference for the classification of crops with weak intra-class differences.

Funder

Nation Natural Science Foundation of China

Joint Fund of Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Henan Province

Provincial Key Technologies R & D Program of Henan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3